↔ ⇔ ≡
Логические символы, изображающие тогда и только тогда.
«Тогда и только тогда» — логическая связка эквиваленции между утверждениями, применяемая в логике, математике, философии. Чтобы быть эквиваленцией, связка должна быть идентична стандартному материальному условному высказыванию («только тогда» эквивалентно «если … то»), соединённому со своей противоположностью, откуда и название связки. В результате истинность одного утверждения требует такой же истинности другого, то есть либо оба они истинны, либо оба ложны. Можно спорить о том, передаёт ли выражение русского языка «тогда и только тогда» определённую выше связку с её уже существующим смыслом. Конечно, ничто не может помешать нам читать эту связку именно как «тогда и только тогда», хотя это может иногда привести к путанице.
В письменной форме в качестве альтернативы к «тогда и только тогда» часто используется достаточно спорные выражения, включающие: Q необходимо и достаточно для Р; Р эквивалентно (или материально эквивалентно) Q; Р точно, если Q; P точно, когда Q; P точно в случае Q; P именно в случае Q.
В логических формулах вместо всех вышеприведённых фраз используются логические символы.
Определение
Таблица истинности для p ↔ q имеет следующий вид:
Заметим, что эквивалентное преобразование производит стандартная ячейка XNOR, а противоположное преобразование — стандартная ячейка XOR.
Использование
Нотация
Для обозначения в формулах логической связки «тогда и только тогда» используются логические символы ↔, ⇔ и ≡. В английских текстах иногда для обозначения связки используется «iff» (аббревиатура от «if and only if»), а в русскоязычных текстах по аналогии изредка используется аббревиатура «ттт» или «согда». Обычно все эти символы трактуются как эквивалентные. Однако некоторые тексты математической логики (особенно по логике первого порядка и в меньшей степени по логике высказываний) делают различие между ними, причём, первый знак ↔ используется как символ в логических формулах, тогда как знак ⇔ используется в рассуждениях по поводу этих формул (например, в металогике). В нотации Лукасевича в качестве префикса используется символ «E». Отрицанием данной связки является «исключающее или».
Доказательства
В большинстве логических систем доказывается утверждения вида «P ↔ Q» через доказательство «если P, то Q» и «если Q, то P» (или обратное «если не-P, то не-Q» и «если не-Q, то не-P»). Доказательство этой пары утверждений иногда приводит к более строгому доказательству, поскольку есть неочевидные условия, из которых можно вывести эквиваленцию непосредственно. Альтернативой является доказательство дизъюнкции «(P и Q) или (не-P и не-Q)», которая сама по себе может быть выведена из дизъюнктов, т.е поскольку связка ↔ является функцией истинности, то отсюда следует, что «P ↔ Q» истинно только, если P и Q оба истинны или оба ложны.
Отличие «тогда» и «только тогда»
Достаточность является инверсией необходимости. То есть, если дано P→Q (или если P, то Q), то P будет достаточным условием для Q, а Q будет необходимым условием для P. Кроме того, если дано P→Q, то истинно также ¬Q→¬P (где ¬ является оператором отрицания, то есть «не»). Это означает, что связь между P и Q, установленная оператором P→Q, может быть выражена следующими эквивалентными способами:
P достаточно для Q (если P истинно, то Q достоверно) Q необходимо для P (если Q истинно, то P вероятностно) ¬Q достаточно для ¬P (если ¬Q истинно, то ¬P достоверно) ¬P необходимо для ¬Q (если ¬P истинно, то ¬Q вероятностно)Если в качестве примера взять вышеприведённое предложение (1), в котором утверждается P→Q, где P — это «пудинг, о котором идёт речь, с заварным кремом», а Q — это «Мэдисон будет есть пудинг, о котором идёт речь». Следующие четыре способа выражения отношений эквивалентны:
Если пудинг, о котором идёт речь, с заварным кремом, тогда Мэдисон будет его есть. Только если Мэдисон будет есть пудинг, о котором идёт речь, он, возможно, с заварным кремом. Если Мэдисон не будет есть пудинг, о котором идёт речь, он без заварного крема. Только если пудинг, о котором идёт речь, без заварного крема, Мэдисон, возможно, не будет его есть.Таким образом, мы видим, что вышеприведённое предложение (2) можно переформулировать в виде если … то, например, «Если Мэдисон съест пудинг, о котором идёт речь, то он с заварным кремом». Беря это в сочетании с (1), мы находим, что (3) можно сформулировать так: «Если пудинг, о котором идёт речь, с заварным кремом, тогда Мэдисон будет его есть, И если Мэдисон будет есть пудинг, то он с заварным кремом».