Главная
Новости
Строительство
Ремонт
Дизайн и интерьер
Каркасный дом
Несущие конструкции
Металлические конструкции
Прочность дорог
Дорожные материалы
Стальные конструкции
Грунтовые основания
Опорные сооружения





















Яндекс.Метрика

Комбинаторика

Комбинаторика (иногда называемая комбинаторным анализом) — раздел математики, посвящённый решению задач, связанных с выбором и расположением элементов некоторого (чаще всего конечного) множества в соответствии с заданными правилами. Каждое такое правило определяет некоторую выборку из элементов исходного множества, которая называется комбинаторной конфигурацией. Простейшими примерами комбинаторных конфигураций являются перестановки, сочетания и размещения.

Типичные задачи комбинаторики:

  • Определить количество комбинаторных конфигураций, соответствующих заданным правилам (в частности, доказать или опровергнуть их существование).
  • Найти практически пригодный алгоритм их полного построения.
  • Определить свойства заданного класса комбинаторных конфигураций.
  • Комбинаторика тесно связана со многими другими областями математики — алгеброй, геометрией, теорией вероятностей, теорией чисел и другими. Она применяется в самых различных областях знаний (например, в генетике, информатике, статистике, статистической физике, лингвистике).

    Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве».

    Примеры комбинаторных конфигураций и задач

    Для формулировки и решения комбинаторных задач используют различные модели комбинаторных конфигураций. Примерами комбинаторных конфигураций являются:

    • Размещением из n элементов по k называется упорядоченный набор из k различных элементов некоторого n-элементного множества.
    • Перестановкой из n элементов (например чисел 1, 2, … n) называется всякий упорядоченный набор из этих элементов. Перестановка также является размещением из n элементов по n.
    • Сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений.
    • Композицией числа n называется всякое представление n в виде упорядоченной суммы целых положительных чисел.
    • Разбиением числа n называется всякое представление n в виде неупорядоченной суммы целых положительных чисел.

    Примеры комбинаторных задач:

  • Сколько имеется способов разместить n предметов по m ящикам, чтобы выполнялись заданные ограничения?
  • Сколько существует функций F {displaystyle F} из m-элементного множества в n-элементное, удовлетворяющих заданным ограничениям?
  • Сколько существует различных перестановок из 52 игральных карт? Ответ: 52! (52 факториал), то есть: 80 658 175 170 943 880 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000,
  • или примерно 8,065 8 ⋅ 10 67 . {displaystyle 8{,}0658cdot 10^{67}.}
  • При игре в кости бросаются две кости, и выпавшие очки складываются; сколько существует комбинаций, в которых сумма очков на верхних гранях равна двенадцати? Решение: Каждый возможный исход соответствует функции F : { 1 , 2 } → { 1 , 2 , 3 , 4 , 5 , 6 } {displaystyle F:{1,2} o {1,2,3,4,5,6}} (аргумент функции — это номер кости, значение — очки на верхней грани). Очевидно, что лишь 6 + 6 даёт нам нужный результат 12. Таким образом, существует всего одна комбинация, при которой сумма очков на верхних гранях равна двенадцати.
  • История

    Древность и средние века

    Основные комбинаторные понятия и вычислительные результаты появились в древнем мире. Классическая задача комбинаторики: «сколько есть способов извлечь m элементов из N возможных» упоминается ещё в сутрах древней Индии (начиная примерно с IV века до н. э.). Индийские математики, видимо, первыми открыли биномиальные коэффициенты и их связь с биномом Ньютона. Во II веке до н. э. индийцы знали, что сумма всех биномиальных коэффициентов степени n равна 2 n {displaystyle 2^{n}} .

    Комбинаторные мотивы можно заметить в символике китайской «Книги Перемен» (V век до н. э.). По мнению её авторов, всё в мире комбинируется из различных сочетаний мужского и женского начал, а также восьми стихий: земля, горы, вода, ветер, гроза, огонь, облака и небо. Историки отмечают также комбинаторные проблемы в руководствах по игре в Го и другие игры. Большой интерес математиков многих стран с древних времён неизменно вызывали магические квадраты.

    Античные греки также рассматривали отдельные комбинаторные задачи, хотя систематическое изложение ими этих вопросов, если оно и существовало, до нас не дошло. Хрисипп (III век до н. э.) и Гиппарх (II век до н. э.) подсчитывали, сколько следствий можно получить из 10 аксиом; методика подсчёта нам неизвестна, но у Хрисиппа получилось более миллиона, а у Гиппарха — более 100000. Аристотель при изложении своей логики безошибочно перечислил все возможные типы трёхчленных силлогизмов. Аристоксен рассмотрел различные чередования длинных и коротких слогов в стихотворных размерах. Какие-то комбинаторные правила пифагорейцы, вероятно, использовали при построении своей теории чисел и нумерологии (совершенные числа, фигурные числа, пифагоровы тройки и др.).

    В Средние века комбинаторика также продолжала развиваться, в основном, за пределами европейской цивилизации. В XII веке индийский математик Бхаскара в своём основном труде «Лилавати» подробно исследовал задачи, связанные с перестановками и сочетаниями, включая перестановки с повторениями. Другой индийский математик, Махавира (середина IX века), опубликовал формулы для числа перестановок и сочетаний, причём эти формулы, возможно, были знакомы индийским математикам еще в VI веке н. э. Философ и астроном рабби Авраам ибн Эзра (около 1140 года) подсчитал число размещений с перестановками в огласовках имени Бога. Он же установил симметрию биномиальных коэффициентов. Точную формулу для них обнародовал позже талмудист и математик Леви бен Гершом (более известный как Герсонид) в 1321 году.

    Несколько комбинаторных задач содержит «Книга абака» (Фибоначчи, XIII век). Например, он поставил задачу найти наименьшее число гирь, достаточное для взвешивания любого товара весом от 1 до 40 фунтов.

    Новое время

    Блез Паскаль много занимался биномиальными коэффициентами и открыл простой способ их вычисления: «треугольник Паскаля». Позднее выяснилось, что этот способ был уже известен на Востоке (примерно с X века) и он назывался арифметическим треугольником. Паскаль, в отличие от предшественников, строго изложил и доказал свойства этого треугольника. Арифметический треугольник представляет собой графическую диаграмму, показывающую отношения между биномиальными коэффициентами. Позже, в средневековой Англии, кампанология предоставила примеры того, что теперь известно как гамильтоновы циклы в графах Кэли на перестановках.

    В эпоху Возрождения, наряду с прочими науками, комбинаторика начала стремительное развитие. Джероламо Кардано написал проницательное математическое исследование игры в кости, опубликованное посмертно. Теорией этой игры занимались также Никколо Тарталья и Галилео Галилей. История теории вероятностей началась с переписки заядлого игрока шевалье де Мерэ с Пьером Ферма и Блезом Паскалем, где были затронуты несколько тонких комбинаторных вопросов. Помимо азартных игр, комбинаторные методы использовались (и продолжают использоваться) в криптографии — как для разработки шифров, так и для их взлома.

    Сам термин «комбинаторика» придумал Лейбниц, он считается основоположником современной комбинаторики. В 1666 году (ему было тогда 20 лет) опубликовал книгу «Рассуждения о комбинаторном искусстве». Правда, термин «комбинаторика» Лейбниц понимал чрезмерно широко, включая в него всю конечную математику и даже логику. Ученик Лейбница Якоб Бернулли, один из основателей теории вероятностей, изложил в своей книге «Искусство предположений» (1713) множество сведений по комбинаторике.

    В этот же период формируется терминология новой науки. Термин «сочетание» (combination) впервые встречается у Паскаля (1653, опубликован в 1665 году). Термин «перестановка» (permutation) употребил в указанной книге Якоб Бернулли (хотя эпизодически он встречался и раньше). Бернулли использовал и термин «размещение» (arrangement).

    После появления математического анализа обнаружилась тесная связь комбинаторных и ряда аналитических задач. Абрахам де Муавр и Джеймс Стирлинг нашли формулы для аппроксимации факториала.

    Окончательно комбинаторика как самостоятельный раздел математики оформилась в трудах Эйлера. Он детально рассмотрел, например, следующие проблемы:

    • задача о ходе коня;
    • задача о семи мостах, с которой началась теория графов;
    • построение греко-латинских квадратов;
    • обобщённые перестановки.

    Кроме перестановок и сочетаний, Эйлер изучал разбиения, а также сочетания и размещения с условиями.

    Современное состояние

    Работы Паскаля, Ньютона, Якоба Бернулли и Эйлера стали фундаментальными в развитии этой области. В наше время работы Дж. Дж. Сильвестра (конец XIX века) и Перси Макмэна (начало XX века) помогли заложить основы перечислительной и алгебраической комбинаторики. Теория графов также вызывала растущий интерес, особенно в связи с теоремой о четырёх красках и задачами экономики.

    Во второй половине XX века комбинаторика пережила новый бурный рост, что было связано с быстрым раз­ви­ти­ем дис­крет­ной ма­те­ма­ти­ки, ин­фор­ма­ти­ки, ки­бер­не­ти­ки и пла­ни­ро­ва­ния экс­пе­ри­мен­та. Частично этот рост был стимулирован обнаруженными связями и приложениями в других областях математики — в алгебре, теорией вероятностей, функциональном анализе, теории чисел и т. д. Эти связи стирают границы между комбинаторикой и другими областями математики, но в то же время приводят к определённой фрагментации комбинаторики.

    В начале XX века началось развитие комбинаторной геометрии: были доказаны теоремы Радона, Хелли, Юнга, Бляшке, а также строго доказана изопериметрическая теорема. На стыке топологии, анализа и комбинаторики были доказаны теоремы Борсука — Улама и Люстерника — Шнирельмана. Во второй четверти XX века были поставлены проблема Борсука и проблема Нелсона — Эрдёша — Хадвигера. В 1940-х годах оформилась теория Рамсея. Отцом современной комбинаторики считается Пал Эрдёш, который ввёл в комбинаторику вероятностный анализ. Внимание к конечной математике и, в частности, к комбинаторике значительно повысилось со второй половины XX века, когда появились компьютеры. Сейчас это чрезвычайно содержательная и быстроразвивающаяся область математики.

    Методы и разделы комбинаторики

    Перечислительная комбинаторика

    Перечислительная комбинаторика (или исчисляющая комбинаторика) рассматривает задачи о перечислении или подсчёте количества различных конфигураций (например, перестановок) образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.

    Количество конфигураций, образованных несколькими манипуляциями над множеством, подсчитывается согласно правилам сложения и умножения.

    Числа Фибоначчи являются типичным примером задачи в перечислительной комбинаторике, а также известная Задача о письмах. Двенадцатеричный путь обеспечивает единую структуру для подсчета перестановок, сочетаний и разбиений.

    Аналитическая комбинаторика

    Аналитическая комбинаторика относится к перечислению комбинаторных структур с использованием инструментов из комплексного анализа и теории вероятности. В отличие от перечислительной комбинаторики, которая использует явные комбинаторные формулы и производящие функции последовательности для описания результатов, аналитическая комбинаторика нацелена на получение асимптотических формул.

    Теория разбиения

    Теория разбиения изучает различные перечислительные и асимптотические задачи, связанные с разбиением натуральных чисел, и тесно связана с q-рядами, специальными функциями и ортогональными многочленами. Первоначально она была частью теории чисел и анализа, а теперь рассматривается как часть комбинаторики или самостоятельная область. Она включает в себя биективный подход, различные инструменты анализа и аналитической теории чисел, имеет также связи со статистической механикой.

    Теория графов

    Графы являются фундаментальными объектами в комбинаторике. Теория графов рассматривает перечисления (например, число n вершин с k ребрами графа), существующие структуры (например, гамильтоновы циклы), алгебраические представления (например, возьмем граф G и два числа x и y, имеет ли Многочлен Татта TG(x, y) комбинаторное представление?). Хотя между теорией графов и комбинаторикой существуют очень сильные связи, они иногда рассматриваются как отдельные предметы. В то же время комбинаторные методы применимы ко многим задачам теории графов, эти две дисциплины обычно используются для поиска решений различных типов задач.

    Теория схем

    Теория схем — это исследование комбинаторных схем, которые представляют собой наборы подмножеств с определенными свойствами пересечения. Блок схемы — это комбинаторные схемы особого типа. Эта область является одной из старейших частей комбинаторики, например, предложенная в 1850 году задача Киркмана о школьницах. Решение задачи является частным случаем системы Штейнера, системы которой играют важную роль в классификации простых конечных групп. Эта область имеет дальнейшие связи с теорией кодирования и геометрической комбинаторикой.

    Конечная геометрия

    Конечная геометрия — это изучение геометрических систем, имеющих только конечное число точек. Структуры аналогичны тем, которые встречаются в непрерывной геометрии (плоскость Евклидова, реальное проективное пространство и т. д.), но определены комбинаторно основные изучаемые элементы. Эта область предоставляет богатый источник примеров для теории схем. Её не следует путать с дискретной геометрией (комбинаторной геометрией).

    Теория порядка

    Теория порядка — это изучение частично упорядоченных множеств, как конечных, так и бесконечных. Различные примеры частичных порядков встречаются в алгебре, геометрии, теории чисел и во всей комбинаторике, и теории графов. Известные классы и примеры частичных порядков включают решетки и булевы алгебры.

    Теория матроидов

    Теория матроидов абстрагирует часть геометрии. Она изучает свойства множеств (обычно конечных множеств) векторов в векторном пространстве, которые не зависят от конкретных коэффициентов в линейно зависимом отношении. Не только структура, но и перечислительные свойства принадлежат теории матроидов. Теория матроидов была введена Хасслером Уитни и изучалась как часть теории порядка. В настоящее время это самостоятельная область исследований, имеющая ряд связей с другими разделами комбинаторики.

    Экстремальная комбинаторика

    Экстремальная комбинаторика изучает экстремальные вопросы о системах множеств. Типы вопросов, рассматриваемых в этом случае, относятся к самому большому возможному графу, который удовлетворяет определенным свойствам. Например, самый большой граф без треугольников на 2n вершинах — это полный двудольный граф Kn, n. Часто бывает слишком трудно даже точно найти экстремальный ответ f(n) и можно дать только асимптотическую оценку.

    Теория Рамсея

    Теория Рамсея — это еще одна часть экстремальной комбинаторики. Она утверждает, что любая достаточно большая конфигурация будет содержать некоторый порядок и изучает наличие регулярных структур в случайных конфигурациях элементов. Это расширенное обобщение принципа Дирихле («принцип голубей и ящиков»). Примером утверждения из теории Рамсея может служить следующее:

    в группе из 6 человек всегда можно найти трёх человек, которые либо попарно знакомы друг с другом, либо попарно незнакомы.

    В терминах структурной комбинаторики это же утверждение формулируется так:

    в любом графе с 6 вершинами найдётся либо клика, либо независимое множество размера 3.

    Вероятностная комбинаторика

    Этот раздел отвечает на вопросы вида: какова вероятность присутствия определённого свойства для случайного дискретного объекта, такого как случайный граф? Например, каково среднее число треугольников в случайном графе? Вероятностные методы также используются для определения существования комбинаторных объектов с определенными заданными свойствами (для которых явные примеры может быть трудно найти), просто наблюдая, что вероятность случайного выбора объекта с этими свойствами больше 0. Этот подход (часто называемый вероятностным методом) доказал свою высокую эффективность в приложениях экстремальной комбинаторики и теории графов. Тесно связанной областью является изучение конечных цепей Маркова, особенно на комбинаторных объектах. Здесь снова используются вероятностные инструменты для оценки времени смешивания.

    Часто ассоциируемая с Палом Эрдёшем, который сделал новаторскую работу по этому предмету, вероятностная комбинаторика традиционно рассматривалась как набор инструментов для изучения задач в других частях комбинаторики. Однако с ростом приложений для анализа алгоритмов в информатике, а также классической теории вероятностей, аддитивной теории чисел и вероятностной теории чисел, эта область в последнее время выросла и стала самостоятельной областью комбинаторики.

    Алгебраическая комбинаторика

    Алгебраическая комбинаторика — это область математики, которая использует методы абстрактной алгебры, в частности теорию групп и теорию представлений, в различных комбинаторных контекстах и, наоборот, применяет комбинаторные методы к задачам алгебры. Алгебраическая комбинаторика постоянно расширяет свой охват, как в тематических направлениях, так и в методах и может рассматриваться как область математики, где взаимодействие комбинаторных и алгебраических методов особенно сильно и существенно.

    Комбинаторика слов

    Комбинаторика слов имеет дело с формальными языками. Она возникла самостоятельно в нескольких областях математики, в том числе в теории чисел, теории групп и теории вероятности. Она имеет приложения в перечислительной комбинаторике, фрактальном анализе, теоретической информатике, теории автоматов и лингвистике. Хотя многие приложения являются новыми, классическая иерархия Хомского классов формальных грамматик является, пожалуй, самым известным результатом в этой области.

    Комбинаторная геометрия

    Геометрическая комбинаторика связана с выпуклой и дискретной геометрией, в частности с комбинаторикой многогранников. Например, она спрашивает, сколько граней каждого измерения может иметь выпуклый многогранник. Важную роль играют также метрические свойства многогранников, например, теорема Коши о жесткости выпуклых многогранников. Рассматриваются также особые многогранники, такие как перестановочные многогранники, ассоциаэдры и многогранники Биркгофа. Комбинаторная геометрия — это старомодное название дискретной геометрии.

    Топологическая комбинаторика

    Топологическая комбинаторика применяет идеи и методы комбинаторики в топологии, при изучении раскрасок графа, справедливого делёжа, разбиения, дерева принятия решений, частично упорядоченных множеств, задач «ожерелья» и дискретной теории Морсе. Её не следует путать с комбинаторной топологией, которая является более старым названием алгебраической топологии.

    Арифметическая комбинаторика

    Арифметическая комбинаторика возникла из взаимодействия между теорией чисел, комбинаторикой, эргодической теории и гармоническим анализом. Она о комбинаторных оценках, связанных с арифметическими операциями (сложение, вычитание, умножение и деление). Аддитивная теория чисел (иногда также называемая аддитивной комбинаторикой) относится к частному случаю, когда задействованы только операции сложения и вычитания. Одним из важных методов арифметической комбинаторики является эргодическая теория динамических систем.

    Инфинитарная комбинаторика

    Инфинитарная комбинаторика — применение идей и методов комбинаторики к бесконечным (в том числе, несчётным) множествам. Это часть теории множеств, область математической логики, но использует инструменты и идеи как теории множеств, так и экстремальной комбинаторики.

    Джан-Карло Рота использовал название непрерывной комбинаторики для описания геометрической вероятности, поскольку существует много аналогий между подсчетом и мерой.

    Связанные области

    Комбинаторная оптимизация

    Комбинаторная оптимизация — это исследование оптимизации дискретных и комбинаторных объектов. Она начиналась как часть комбинаторики и теории графов, но теперь рассматривается как раздел прикладной математики и информатики, связанный с исследованием операций, теорией алгоритмов и теорией сложности вычислений.

    Теория кодирования

    Теория кодирования началась как часть теории схем с ранними комбинаторными конструкциями кодов, исправляющих ошибки. Основная идея предмета заключается в разработке эффективных и надежных методов передачи данных. Сейчас это большая область исследований, часть теории информации.

    Дискретная и вычислительная геометрия

    Дискретная геометрия (также называемая комбинаторной геометрией) также началась как часть комбинаторики, с ранними результатами выпуклых многогранников и контактных чисел. С появлением приложений дискретной геометрии в вычислительной геометрии, эти две области частично слились и стали отдельной областью изучения. Остается много связей с геометрической и топологической комбинаторикой, которые сами по себе можно рассматривать как порождения ранней дискретной геометрии.

    Комбинаторика и динамические системы

    Комбинаторные аспекты динамических систем — это еще одна развивающаяся область. Здесь динамические системы могут быть определены комбинаторными объектами. См., например, динамическая система графов.

    Комбинаторика и физика

    Между комбинаторикой и физикой, в частности статистической физикой, усиливается взаимосвязь. Примеры включают точное решение модели Изинга и связь между моделью Поттса с одной стороны, и хроматическими многочленами и многочленами Татте, с другой стороны.

    Открытые проблемы

    Комбинаторика (в частности, теория Рамсея) содержит много известных открытых проблем, подчас с весьма несложной формулировкой. Например, неизвестно, при каком наименьшем N {displaystyle N} в любой группе из N {displaystyle N} человек найдутся 5 человек, либо попарно знакомых друг с другом, либо попарно незнакомых (хотя известно, что 49 человек достаточно).

    Также есть и другие нерешённые задачи и недоказанные гипотезы:

    • Гипотеза Адамара (1893): для каждого натурального n {displaystyle n} , делящегося на 4, существует вещественная матрица Адамара порядка n {displaystyle n} . Пояснение: известно, что делимость на 4 является лишь необходимым условием существования матрицы Адамара. Существуют различные методы построения вещественных матриц Адамара порядка n = 4 k {displaystyle n=4k} для некоторых бесконечных серий натуральных чисел, делящихся на 4, однако они не позволяют доказать гипотезу Адамара. Наименьшим порядком, кратным 4, для которого матрица Адамара неизвестна, является n = 668 {displaystyle n=668} .
    • Существование конечной проективной плоскости натурального порядка, не являющегося степенью простого числа.
    • Гипотеза Эрдёша — Реньи. Если k {displaystyle k} — фиксированное целое число k ⩾ 3 {displaystyle kgeqslant 3} , то lim inf ( p e r ( A ) ) 1 n > 1 {displaystyle lim ;inf(per(A))^{frac {1}{n}}>1} для A {displaystyle A} из Λ n k {displaystyle Lambda _{n}^{k}} . Здесь p e r ( A ) {displaystyle per(A)} — перманент матрицы A , Λ n k {displaystyle A,Lambda _{n}^{k}} — множество всех ( 0 , 1 ) {displaystyle (0,1)} — матриц порядка n {displaystyle n} c k {displaystyle k} единицами в каждой строке и каждом столбце.
    • Числа Рамсея N ( q 1 , q 2 , . . . , q t ; r ) {displaystyle N(q_{1},q_{2},...,q_{t};r)} для случая t > 2 {displaystyle t>2} почти не изучены.
    • Задача нахождения минимума перманента дважды стохастической матрицы в общем случае не решена.
    • Не известны необходимые и достаточные условия, при которых существует общая трансверсаль для трёх семейств подмножеств.

    Комбинаторика в языкознании

    Комбинаторика (языкознание) — это свойство единиц языка и соответствующих им единиц речи вступать в синтагматические отношения, то есть в отношения сочетаемости.


    Имя:*
    E-Mail:
    Комментарий: