Суперструна




Главная
Новости
Статьи
Ремонт
Каркасный дом
Несущие конструкции
Металлические конструкции
Прочность дорог
Дорожные материалы
Стальные конструкции
Грунтовые основания
Опорные сооружения




28.02.2021


27.02.2021


26.02.2021


26.02.2021


25.02.2021


25.02.2021


24.02.2021


22.02.2021


22.02.2021


22.02.2021





Яндекс.Метрика
         » » Суперструна

Суперструна

19.12.2020

Суперструна (суперсимметричная струна) — один из основных объектов исследования теории струн. Многогранность объекта не позволяет ему дать однозначного определения, однако, как следует из его названия, суперструна содержит в себе суперсимметрию.

Суперсимметрия — это симметрия между бозонами (носителями взаимодействий) и фермионами (компонентами материи). И хотя до сих пор нет явных указаний на такую симметрию в экспериментах, для объединения материи и «света» это, видимо, необходимый элемент.

Бозоны и фермионы обладают разной квантовой статистикой, Бозе-Эйнштейна и Ферми-Дирака соответственно, и поэтому не так просто их объединить в один класс, при этом не нарушив какой-либо из физических принципов. Так что несколько удивительна простота введения суперсимметрии в квантовую теорию поля и теорию струн.

Как уже говорилось в статьях о бозонных и фермионных струнах, координаты параметризованной струны в D-мерном пространстве можно рассматривать либо как набор двумерных скалярных полей, состоящий из D штук и тогда суперсимметричными партнерами D-вектора и двумерного скаляра будут D-вектор и двумерный вещественный (представление Майораны) спинор. Либо как часть D-мерного суперпространства — бозонную и тогда фермиевский остаток переменных суперпространства становится суперпартнёром бозонной части. В первом случае снова возвращаемся к модели Рамона-Нэвьё-Щварца (RNS 1971—1977), во втором приходим к модели Грина-Шварца (GS 1981—1984). Суперпространство просто объединяет бозонные и фермионные координаты, и хотя эти координаты имеют различную структуру, существует способ переходить от одних координат к другим. Это интуитивно ясно, так как 2 фермиона в принципе могут образовать бозон, то с помощью дополнительных фермионов всегда есть возможность переходить от бозонов к фермионам и обратно.

Введение суперсимметрии в теорию струн оказалось возможным двумя способами: суперсимметрия мировой поверхности и пространственно-временная суперсимметрия. В определенном смысле это одно и то же, так как динамика пространства-времени тесно связана с конформной теорией поля. Но до сих пор не ясны полевые корреляции этих двух подходов в изучении взаимодействия струн (см. Случайные поверхности)

Как и следовало ожидать этот необычный гибрид бозонной и фермионной струн наследует меньшую критическую размерность в теории струн, а именно D=10, однако и модель RNS, после проведения GSO проекции и модель GS не содержат вакуумной нестабильности — тахиона.